On-site in Tartu 28 July - 10 August 2024
2nd Summer School on Federated Machine Learning
course provides an introduction to Federated Machine Learning (FL), a privacy-preserving distributed ML. The course will cover the foundational aspects of FL operation and deployment models in Edge computing. Modern FL technologies will cover various aspects, including different data distributions, aggregation algorithms, and communication efficiency approaches. The students will be introduced to state-of-the-art FL technologies and architectures and guided to investigate novel ideas in the area via lectures, practice sessions, and projects. We will also look at industry trends and discuss some innovations that have recently been developed.
The course targets MSc degree students and Ph.D. candidates looking to develop their capacity in modern computer deployment architecture at the Edge/Fog to meet the increasing demand in industry and academia. Also, the course is designed for students of joint data science and distributed system curriculum towards Edge Intelligence. We combine theory, practice sessions, and project assignments to learn about FL. After completing this course, you will learn more about designing and developing an FL solution. Some course material will be drawn from research papers, industry white papers, and technical reports.
The course can be taken on-site in Tartu, Estonia. We have a lecture and discussions in the morning session. Afternoon sessions are dedicated to practicing sessions and project work.
Application deadline 31 May
NB! Please note that every applicant must pay the application fee of 25 EUR. In the application form you must upload proof of payment. Please complete the payment on the application fee payment page.
Focus area: | Designing and Implementing Federated Machine Learning | Coordinating unit at UT | Institute of Computer Science (Data Systems Group) |
Study Field: | Computer Science | Course Leader | Feras Awaysheh |
Format | Hands-on workshop | Location | Tartu, Estonia, Delta Centre |
Course dates: | 28 July - 10 August 2024 | Apply by: | 31 May 2024 |
ECTS: | 3 (+2 for additional assignment) | Fee: | 800 EUR |
Study | MSc/PhD | Language | English |
Lecturers:
Guest Talks:
Christian Lenz, Marc Leon Haller, and Robin Nachtigall
Handling Non-IID Data in Federated Learning: An Experimental Evaluation Towards Unified Metrics
Hiroki Kaminaga
MPCFL: Towards Multi-party Computation for Secure Federated Learning Aggregation
Christos Ntokos
Towards Accelerating the Adoption of Federated Learning for Heterogeneous Data
Leon de Franca Nascimento
Data Skew in Federated Learning: An Experimental Evaluation on Aggregation Algorithms
Mehreen Tahir
SecureFedPROM: A Zero-Trust Federated Learning Approach with Multi-Criteria Client Selection IEEE Journal on Selected Areas in Communications. Currently under review.
Two weeks prior to the start of the programme an information file will be sent to all participants. This file contains the daily schedule and relevant contact information of the programme managers.
Students are responsible for their travel, accommodation and travel insurance (visa arrangements if needed) from their home country to Tartu and back to their home country. It is recommended to visit the Tartu Welcome Centre website and arrival and housing section to find accommodation opportunities.
Mehreen Tahir, a final year PhD student at Dublin City University, Ireland participated in the UniTartu Summer School in 2023.
“My journey to the UniTartu Summer School was a bit of a happy accident. There are not many courses offered in Federated Learning. Thinking that I would at least get a chance to network with like-minded people from my field, I decided to give it a shot. And it turned out to be a beautiful and welcoming place, much more than what I could have imagined!”